Background

Inter-individual variations pose a major challenge in clinical practices. Furthermore, limitations of mass-produced medicine meant that it is difficult to use current dosage form for personalised medicine. In addition, clinical trials often do not include special populations such as geriatrics or paediatrics.

Therefore, there is a need for personalised drug delivery and testing to enable an individualised therapy

Customisable , Zero-order Tablet for Epilepsy

Wearable Microneedle Splint For Trigger Finger

Method

<table>
<thead>
<tr>
<th>Computer Aided Design of Personalised Dosage Form or Testing Device</th>
<th>3D Printing Using Appropriate Biocompatible Material</th>
<th>Physical Characterisation (Dimensions; Mechanical Strength etc)</th>
<th>Functional Characterisation (Safety & Efficacy)</th>
</tr>
</thead>
</table>

Human Respiratory Tract Model for Particulate Deposition Profiling

Conclusion

3D printing is a useful technique to fabricate personalised drug delivery and testing systems. However, much work has to be done to establish the complete and long term safety profile of printed object and also the effect of 3D printing process on drug stability.